

GCE

Biology A

H420/02: Biological diversity

Advanced GCE

Mark Scheme for November 2020

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Marking Annotations

Annotation	Use
BOD	Benefit of Doubt
CON	Contradiction
×	Cross
ECF	Error Carried Forward
GM	Given Mark
2002	Extendable horizontal wavy line (to indicate errors / incorrect science terminology)
I	Ignore
	Large dot (various uses as defined in mark scheme)
12	Highlight (various uses as defined in mark scheme)
NBOD	Benefit of the doubt not given
4	Tick
~	Omission Mark
BP	Blank Page
11	Level 1 answer in Level of Response question
12	Level 2 answer in Level of Response question
13	Level 3 answer in Level of Response question

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

_		
	フハ /	Т
	IVI	1

Mark Scheme

Question	Answer	Marks	AO element	Guidance
1	A✓	1	1.1	
2	D✓	1	1.1	
3	D✓	1	2.5	
4	D✓	1	1.1	
5	B✓	1	2.3	
6	A✓	1	1.1	
7	A✓	1	2.2	
8	A✓	1	2.1	
9	C✓	1	2.5	
10	D✓	1	1.2	
11	D✓	1	1.2	
12	C✓	1	1.1	
13	D✓	1	1.2	
14	C√	1	1.2	
15	A✓	1	2.1	
	Total	15		

Q	uesti	on		Answer	Marks	AO element	Guidance
16	(a)		Di tra pla	omeobox ✓ NA ✓ anscription ✓ ant ✓ ngdoms ✓	5	1.1	
	(b)	(i)	1 2 3 4 5	low cost ✓ rapid reproduction (rate) / more generations in a given time ✓ <i>idea that</i> fruit fly genetics / development is well understood ✓ simple , genetics / body plan ✓ (many) mutations / structures , observable with , light / low powered , microscope ✓	2 max	3.4	 1 ALLOW easy to keep 1 IGNORE small 2 ALLOW short lifespan / grow quickly
		(ii)	or ge (m	w cost / rapid reproduction (rate) r enetics / development , well understood ✓ nore) similar / AW , to humans ✓ <i>lea that</i> can show effects are generalisable to more than one species ✓ <i>lea that</i> more than one species is needed to demonstrate conservation of base sequence ✓	2 max	3.4	ALLOW easy to keep / short lifespan / grow quickly IGNORE small ALLOW share more genes with humans IGNORE homeobox sequence similar to humans ALLOW because they are mammals

Qı	Question		Answer	Marks	AO element	Guidance
17	(a)		in , (named) matrix / gel ✓	1 max	1.2	ALLOW entrapment / encapsulation / inclusion / microcapsulation
			adsorption / bonding to (named) carrier \checkmark			ALLOW carrier bound
			membrane separation ✓ cross-linking / covalent bonding ✓			ALLOW attached to partially permeable membrane
	(b)	(i)	FIRST CHECK ON ANSWER LINE If answer = 6.8 +/- 0.8 award 2 marks	2	2.4	
			$7.5/1.1 = 6.8181^{\circ} \checkmark$ rounded to 2 s.f. = 6.8 \checkmark			ALLOW mp 2 for incorrect answer rounded to 2 s.f
		(ii)	smooth curve AND		3.3	
			goes through or near at least 7 points \checkmark			DO NOT CREDIT extrapolations
		(iii)		3 max	3.2	 1 ALLOW without smaller intervals the student cannot be certain 1 ALLOW examples of untested pH values within this range
			2 peak / optimum , could be anywhere between pH5.5 and pH6 ✓			2 & 3 DO NOT CREDIT optimum is 5.75
			3 peak / optimum , for immobilised tannase could be anywhere <u>between</u> pH 5 and pH6.5 ✓			
			5 no indication that the experiment has been repeated ✓			5 ALLOW enzyme activity is not stated as a 'mean' 5 IGNORE not repeated
			6 AVP ✓			6 CREDIT pH scale is , non linear / logarithmic 6 CREDIT 10 a.u. is V _{max} for this enzyme

Q	uesti	on		Answer	Marks	AO element	Guidance
		(iv)	sh	nmobilised enzymes are) less easily denatured ✓ hape / tertiary structure , supported / AW (by support material) ✓ ea that part of enzyme not fully exposed to pH (8) ✓	2 max	2.2	ALLOW ora for free tannase throughout ALLOW does not denature ALLOW bonds less easily disrupted
	(c)	(i)	1 2 3 4 5	 product not contaminated with enzyme ✓ extraction of , product / enzyme , not needed ✓ recycling (of enzyme) ✓ <i>idea that</i> process can be run over wider temperature range ✓ (bioreactors) can be run continuously for long periods, so less emptying / cleaning needed ✓ 	2 max	1.2	 2 ALLOW reduced downstream processing 3 ALLOW enzyme can be reused / less enzyme needed 4 ALLOW e.g. can be run at lower temperatures so less energy cost / can be run at higher temperatures so faster
		(ii)	fe ide	gh(er) , initial / set-up , costs ✓ wer exposed active sites ✓ <i>ea that</i> immobilization method might affect shape of active site ✓ <i>ea of</i> leakage ✓	1 max	1.2	ALLOW immobilization process is expensive IGNORE more expensive to buy ALLOW active sites and substrates mix more slowly

Qı	Question		n Answer		Marks	AO element	Guidance
18	(a)	(i)	lf a 13	RST CHECK ON ANSWER LINE answer = 0.41 award 2 marks $3/32 \checkmark$ prrect answer to 2 s.f. \checkmark	2	2.4	Max 1 if answer given as %
		(ii)	1 2 3 4 5	 supports because species B has greater (calculated genetic) polymorphism (than species A) ✓ ora might not support because numbers / polymorphisms , are similar ✓ no statistical test performed ✓ might not have sampled same loci ✓ no indication of (fruit flies) sample size ✓ 	3 max	3.1 3.2	1 ALLOW ecf from calculated answer to part (i) 4 IGNORE different numbers of gene loci studied 5 IGNORE sample size is small
	(b)	(i)	An x-a lin ba ba An	In chart drawn ND axis labelled 'phenotype' ND ear y-axis scale labelled 'frequency' ✓ ars correct height and same width ✓ ars fill half the available (vertical) space ✓ ars labelled / key ND ngue rolling and non-tongue-rolling bars do not touch ✓	4	3.3	DO NOT CREDIT stacked bars Y-axis must start at 0 ALLOW all 4 bars not touching

Que	estion	Answer		AO element	Guidance	
	(ii)	FIRST CHECK ON ANSWER LINE If answer = 0.5 or 0.49 or 0.493 or 0.494 award 3 marks $q^2 = 77/248 = 0.31 \checkmark$ $q = \sqrt{0.31} = 0.557 \checkmark$ p = 1 - 0.557 = 0.443 $2pq = 2 \times 0.443 \times 0.557 = 0.494 \checkmark$	3	2.4	IGNORE sig. figs for working marks If answer incorrect, ALLOW either half of working equations for 1 mark each up to a maximum of 2. ALLOW e.g. ' $q^2 = 77/248$ ' or '77/248 = 0.31'	
	(iii)	(population) not (sufficiently) large ✓	2	2.3	<i>Mark the first answer on each prompt line</i> ALLOW ora in context of Hardy-Weinberg assumptions	
		(population) not randomly mating / not subject to selection ✓			ALLOW mutations might occur IGNORE immigration / emigration	

Q	uesti	on	Answer	Marks	AO element	Guidance	
19	(a)	(i)	prophase then metaphase then anaphase then telophase $\checkmark \checkmark$	2	1.2	MAX 1 if interphase or cytokinesis mentioned ALLOW 1 mark if phases named correctly but not in correct order	
		(ii)	genetically identical offspring \checkmark	2 max	2.1	IGNORE clones	
			offspring produced , rapidly / in large numbers 🗸			ALLOW produces more offspring ALLOW finding mate requires , time / energy ALLOW population can increase rapidly IGNORE 'quicker' without some qualification	
			(all) offspring will , find conditions favourable / have same adaptations ✓				
	(b)	(i)					

Level 3 (5–6 marks)	6	1.1, 1.2	Indicative points include	
 Explains in detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis and with reference to <i>Hydra</i>. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Explains in some detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis OR with reference to more than one stage of meiosis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Mentions more than one reason why sexual reproduction leads to genetic variation. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit. 		2.5	 AO1.1 Demonstrate knowledge and understanding of scientific ideas genetic variation is the variety of alleles offspring have alleles from more than one parent random fertilisation meiosis produces genetically unique gametes AO1.2 Demonstrate knowledge and understanding of scientific processes crossing over in prophase 1 alleles swapped between non-sister chromatids base sequence of chromosomes altered independent assortment / random segregation in metaphase 1 also relevant in metaphase 2 if crossing over has occurred AO2.5 Apply knowledge and understanding of scientific processes in a theoretical context when handling qualitative data the sperm from one Hydra can fertilise an egg from any other individual Hydra the two Hydra can have different alleles 	1.1 1.2 2.5

H420/02)
---------	---

						 sperm carried in water might travel large distances to unrelated <i>Hydra</i>
Q	uesti	on	Answer	Marks	AO element	Guidance
		(ii)	(some offspring) might survive unfavourable conditions ✓ (some) offspring have useful alleles ✓	1 max	2.1	IGNORE eggs can lie dormant as stated in question IGNORE less susceptible to unfavourable conditions
			(named) unfavourable conditions mean (all) offspring might die (if asexual) ✓			
	(c)	(i)	224 ✓	1	2.2	haploid number = 28 x 2 for diploid number = 56 x 2 after DNA replication = 112 x 2 strands per molecule = 224
		(ii)	a cross drawn anywhere between sporophyte and spores \checkmark	1	2.5	
		(iii)	many mitochondria ✓ to supply , energy / ATP , for movement ✓ OR	2	2.1	Mark the first suggestion given but ignore partially achieved marking points DO NOT CREDIT make energy
			enzymes / acrosome ✓ (enzymes) to , penetrate / AW , egg ✓			ALLOW to digest outer layer / break through membrane DO NOT CREDIT break down egg cell wall

Qu	Question		Ai	nswer		Marks	Marks AO element Guidance	
20	(a) (i)		A = combustion \checkmark				1.2	ALLOW burning
			$F = respiration \checkmark$					IGNORE aerobic / anaerobic
		(ii)	more combustion / less ph	otosynthesis 🗸		1	2.6	ALLOW more burning (of fuel)
	(b)	(i)				max 3	2.1	Mark the first 3 responses
			Glucose	Starch			2.2	ALLOW two responses in the same box if they are on the same horizontal level
			monomer	polymer	~			
			monosaccharide	polysaccharide	~			
			no glycosidic bonds	glycosidic bonds	~			ALLOW glycosidic links
			$C_6H_{12}O_6$ / more H and O	$C_6H_{10}O_5$ / less H and O	~			IGNORE 1-6 glycosidic bonds
					-			IGNORE branched
		(ii)	S / sulfur ✓			1	1.1	ALLOW sulphur
	 (c) Please refer to the marking instructions on page 4 of this model. In summary: Read through the whole answer. (Be prepared to recognise and Using a 'best-fit' approach based on the science content of the Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, accordin o award the higher mark where the Communication Statem award the lower mark where aspects of the Communication The science content determines the level. 				nd credit u e answer, ng to the (ment has l	nexpected first decide Communic been met. ment have	approaches where they show relevance.) which of the level descriptors, Level 1 , Level 2 or cation Statement (shown in italics):	

Question	Answer		AO element	Guidance	
Des and The logic sub Lev Des and deta The The sup Lev Mer cycl The way rela	ere is a line of reasoning presented with some structure. a information presented is in the most-part relevant and aported by some evidence. vel 1 (1–2 marks) ntions some similarities between the carbon and nitrogen	6	2.5	 Indicative points include AO2.5 Apply knowledge and understanding of scientific processes in a theoretical context when handling qualitative data inorganic gases CO2 and N2 in atmosphere elements fixed to organic compounds C and N both form proteins / nucleic acids incorporated into plants (producers) then animals (consumers) animals obtain element by feeding on plants decomposing microorganisms break down organic macromolecules in living things release inorganic molecules carbon dioxide and ammonium ions microorganisms return element to atmosphere CO2 released during decomposition N2 released by denitrifying bacteria 	

Qı	Question			Answer	Marks	AO element	Guidance
21	(a)	(i)		RST CHECK ON ANSWER LINE answer 91 ± 1or 90.7 ± 1 (%) award 2 marks	2	2.8	Max 1 if answer not given to 2 or 3 s.f.
			19	5000 - 20000 = 195000 $5000/215000 = 0.907 \checkmark$ $100 = 90.7 \checkmark$			<i>If answer incorrect …</i> ALLOW 195 000/215 000 or 0.907 for 1 mark
		(ii)		ea of changes over time \checkmark s with units to illustrate population change \checkmark	2	2.8	ALLOW calculated change / ref to answer to part (i)
		(iii)	1	no data shown for , winter months / Dec / Jan / Feb \checkmark	3 max	3.2	
			2	no data shown about temperature or light \checkmark			
			3	idea of fluctuations / dips during summer months \checkmark			
			4	another , biotic / abiotic , factor could be causing the increase \checkmark			 4 ALLOW e.g. increased nutrient availability / reduction in predators / increased CO₂ / qualified reference to pollution 4 ALLOW correlation does not imply causal link
	(b)	(i)	1	protoctista ✓	4 max	3.1 3.2	1 ALLOW protista
			2	nucleus / (named) membrane-bound organelles , so <u>eukaryot</u> ic / not <u>prokaryot</u> ic ✓		3.2	2 IGNORE eukarya 2 IGNORE peptidoglycan
			3 4	unicellular so not plant(ae) ✓ cell wall / chloroplast / starch grains, so not animal(ia) ✓			4 IGNORE autotrophic
			5	cellulose cell wall / chloroplast , so not fungi 🗸			

Q	Question		Answer		AO element	Guidance
						 5 ALLOW cell wall not chitin so not fungi 5 IGNORE autotrophic
		(ii)	(nucleic acid) base sequence / amino acid sequence ✓ genes / DNA / RNA / cytochrome C ✓	1	2.1	ALLOW genetic material IGNORE chromosomes / RNA polymerase / ribosomes DO NOT CREDIT haemoglobin

Qı	Question		Answer		AO element	Guidance	
22	22 (a) (i)		C and F and I and J ✓	1	1.2	ALLOW the correct terms written instead of letters	
		(ii)	I and J ✓	1	1.1	ALLOW the correct terms written instead of letters	
		(iii)	A and E and G and H ✓	1	1.2	ALLOW the correct terms written instead of letters	
		(iv)	F ✓ one / few , types of cell performing a function ✓	2	2.1 1.1	ALLOW mucous membrane IGNORE J ALLOW examples of cells involved if one or few types is implied ALLOW similar cells doing the same job	
	(b)		<i>cytokines</i> attract / AW , (named) phagocytes ✓	2	1.2	IGNORE increase phagocytosis without reference to movement	

Qı	Question		Answer	Marks	AO element	Guidance
			opsonins bind to / AW , pathogens / foreign cells / antigens , and increase phagocytosis / recognition by phagocytes ✓			
	(c)	(i)	type of immunitynatural and activenatural and passiveartificial and activeartificial and passive✓	1	2.5	
		(ii)	injected ✓ (patient) is not <u>producing</u> , antibodies / memory cells / immune response ✓	2	1.1	IGNORE natural / artificial / active / passive IGNORE 'antibodies are given', as this is in the question

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

